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ABSTRACT  
In this paper, a generic approach for applying physics of failure methods for component life prediction is 
described, which has been applied to several cases in the military domain in recent years. Three of these cases 
are discussed in more detail to demonstrate the potential and limitations: a CV90 vehicle sprocket wheel, a 
printed circuit board from a naval radar system and a shock absorber in a NH-90 helicopter. After that, the 
challenges encountered during development, testing and application of these models are discussed, and 
potential solutions and directions for research are indicated. The first challenge is the selection of the (critical) 
parts. The second challenge is the validation of the developed models, which suffers from the lack of well-
documented failure data. The third challenge addressed is the link with data analytics. In recent years a lot of 
additional sensors have appeared in many weapon systems. However, interpretation of datasets and data 
analyses without proper knowledge on the system and its failure behaviour appeared to be rather difficult. 
Suggestions for combining artificial intelligence methods with physics of failure will be given, heading for the 
development of hybrid prediction methods. 

1.0 INTRODUCTION 

Applying an efficient and effective preventive maintenance policy to military systems is very important. As 
most of the subsystems and components are critical, i.e. their failure has considerable consequences, the 
adopted maintenance policy has to be effective to ensure that failures are prevented. At the same time, the 
policy must be efficient, which means that premature replacement of components must be prevented. The 
solution would be a just-in-time, or on-condition, maintenance policy, where components are replaced or 
repaired just before the end of their service life. And specifically for a military context, this approach has the 
additional benefit that it allows for opportunistic work paced by operational needs: knowing the remaining life 
time of systems, a proper cost trade-off of a removal earlier than just before a failure can be made.  

Applying such a just-in-time policy requires that information on the actual condition of the component or the 
expected remaining life time is available. Two options exist to achieve this: (i) monitoring the condition of the 
system, or (ii) calculating / predicting the degradation and associated life time. For the first option, the 
condition is measured, either continuously or periodically, and maintenance is performed when a predefined 
threshold is exceeded. An example of such an approach is vibration monitoring of rotating equipment. 
Although maintenance can be executed just-in-time, the drawback of this option is the rather reactive character: 
when the condition monitoring system indicates that the threshold is exceeded, more or less immediate action 
is required, depending on the P-F interval (i.e. the time between the detection of an upcoming failure, P, and 
the actual occurrence of that failure, F) of the used technique. 

The second option, focusing on calculating or predicting the degradation and life time, allows a more pro-
active approach: as the expected failure is known in advance, maintenance tasks can be properly planned, 
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including provisions for required spare parts, facilities and personnel. The first option can be considered as a 
diagnostic approach, whereas this second option is the domain of prognostics. However, a reliable prediction 
of the remaining useful life (RUL) requires a proper model, for which again several options exist: (i) fully 
data-driven methods, (ii) models based on the physics of failure, and (iii) combinations of these, i.e. hybrid 
approaches. The data-driven approaches are based on large (failure) datasets and analytics techniques like 
machine learning, whereas the model-based approaches start from physical models describing failure 
mechanisms like fatigue, wear or corrosion.  

The fast advance in artificial intelligence methods, in combination with the wide availability of all types of 
sensors and associated data, has led to many data-driven methods in diagnostics and prognostics. But these 
approaches have one common disadvantage: they heavily rely on examples of failures in the datasets, which 
are used to train the methods. But, as maintenance is intended to prevent failures, especially for critical systems 
the number of failures is per definition limited. This limits the application of fully data-driven methods, and 
calls for including physics of failure into the prognostic methods, as these rely less heavily on failure data.  

This paper will therefore focus on the use of physics of failure in the prediction of critical failures. Both fully 
model-based methods and hybrid approaches will be discussed, and the opportunities and challenges of these 
methods will be discussed. The paper is organized as follows: in the next section the basic approach of physical 
model based prognostics is introduced. Section 3 then presents a number of case studies, demonstrating how 
the approach has been applied to some real military systems in previous work. The most important contribution 
of this paper is in section 4, where the main challenges are discussed, and suggestions are provided to tackle 
these. Finally, section 5 forwards the conclusions.  

2.0 PHYSICAL MODEL BASED PROGNOSTICS 

The basic idea of physical model based prognostics is that detailed knowledge of the failure process is used to 
predict the time to failure. The physical principles underlying mechanisms like fatigue, corrosion and wear are 
captured by a numerical model, which typically quantifies the relation between the applied load to a system, 
and the resulting time to failure (Tinga, 2013b). As a large part of the relation is based on physical principles, 
data is only required to find the proper values of the model (or material) parameters. This is opposite to the 
data-driven and artificial intelligence methods, which start without any knowledge on the underlying physics, 
and thus also have to derive the type and structure of the relation from the data. This typically requires more 
data, and a sufficient number of failure examples. 

Application of physics of failure models in life time prediction is visualized in  Figure 1 (Tinga, 2010). For 
any system (or in military: platform) a relation exists between how the system is operated (usage) and the 
associated time to failure (remaining life). However, for most operators of systems, this relation is unknown, 
which means that it is hard to assess what the expected RUL is for a certain operational usage profile. In that 
case understanding the physics of failure can be useful, as it depends on the specific failure mechanism how 
(changes in) the usage profile affect the RUL of the critical components. For example, for a component failing 
due to fatigue, the number of stress cycles is relevant (e.g. the number of start / stops of a gas turbine), but for 
a corrosion-related failure, the calendar time is expected to be much more relevant. Figure 1 shows that 
selecting a suitable failure model allows to translate the component loads to a life time prediction, which 
provides input to the prognostics of the complete system.  

In addition to the models, also monitoring of the system is required, as either the usage, loads or condition of 
the component under consideration must be measured. Condition monitoring directly assesses the degradation 
of the component, which allows to decide on required maintenance activities. This does not require any 
physical model, but it also yields a rather reactive maintenance policy, as was discussed in section 1. If the 
condition cannot be directly monitored, it must be calculated using a failure model. This requires quantifying 
the loads by either direct measurements (load monitoring, e.g. applying a strain gauge or thermocouple to the 
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component) or by calculating them from the measured usage of the system. An example of the latter is the 
calculation of centrifugal forces in a rotating part from the (monitored) rotational speed variation. 

 

Figure 1: Relation between system usage, loads and life time, using models for physical failure 
mechanisms (Tinga, 2010). 

The approach shown in Figure 1 is generic, as the platform / system can be any system (e.g. helicopter, diesel 
engine, bridge), and also the failure mechanism could be any mechanism (fatigue, wear, corrosion). So this 
approach can be applied in any situation where (i) the remaining life of a system or component must be 
determined, (ii) the failure mechanism is known and a failure model is available and (iii) either the usage, loads 
or condition are monitored. In the next section, three cases are presented in which this approach is applied to 
some military system.  

3.0 CASE STUDIES 

The approach introduced in the previous section has been applied to a range of case studies within the Dutch 
Ministry of Defence in the last couple of years. Most of them have been published before, but this section will 
briefly summarize three specific cases to demonstrate the approach and potential.  

3.1 CV90 track wear 
The first case presented here is on the CV90 infantry vehicle as shown in Figure 2. The aim is to predict the 
wear of the depicted sprocket wheel, which drives the track of the vehicle. This wheel must be replaced when 
it has worn too much. To minimize the vehicle downtime due to such a replacement, the wear and associated  

   

Figure 2: CV90 infantry vehicle, operating in a sandy environment and the sprocket wheel (right). 
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RUL must be predicted for a specific operational usage profile (Tinga et al., 2014) (Tinga et al., 2021). An 
assessment of the most critical failure modes, both in terms of cost drivers and performance killers, identified 
the track and sprocket wheel to be top priority failures. The failure mechanism of the sprocket wheel is wear 
due to the abrasive action of sand particles sliding along the wheel during operation in sandy conditions. For 
this situation, a physical model was developed (Woldman et al., 2015) that describes the effect of different 
sand particle properties (size, shape) on the wear rate.   

3.1.1 Model description 

The physical model used here is the Archard law, that describes the wear volume as a function of normal 
force (Fn), sliding distance (s) and specific wear rate (k) 

 
𝑉𝑉 = 𝑘𝑘𝐹𝐹𝑛𝑛s           (1) 

 
The specific wear rate [mm3/Nm] is a proportionality factor including the effects of all other factors, e.g. 
hardness, amount of lubrication, surface roughness, etc. The generic process in Figure 1 indicates that the 
local loads that are used as input for the failure model must now be associated to the usage of the system. 
 
The normal force that is exerted by the track on the sprocket wheel in the contact area is related to the power 
setting of the engine. By using the gear box transmission ratios, the number of sprocket wheels and number 
of teeth on each sprocket wheel, the magnitude of the force for every power setting can be calculated. The 
sliding distance is in this case the distance the track moves relative to the sprocket wheel, which is a constant 
distance per revolution. The sliding distance can thus be related to the driving distance of the vehicle.  
 
The final parameter in the wear law is the specific wear rate k. This parameter is related to the material 
properties of the sliding components, but also depends on whether or not sand is present in the contact, and 
on the properties of the sand. An extensive research project was executed to quantify the effect of different 
sand particle properties on the wear rate (Woldman et al., 2012; Woldman et al., 2013). Some examples of 
different sand types investigated are shown in Figure 3, indicating a large difference in particle size and 
shape.  

 

    
Figure 3: Different sand varieties from Afghanistan, Gambia, the Netherlands and silver sand. 

The effect of sand particle properties on the specific wear rate has been quantified and can be expressed by 
the following relation 

𝑘𝑘
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟

= �
𝛺𝛺𝑖𝑖
𝛺𝛺𝑟𝑟𝑟𝑟𝑟𝑟

�
3

∙ �
𝑛𝑛𝑖𝑖
𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟

�
1.5

∙ �
𝜅𝜅𝑖𝑖
𝜅𝜅𝑟𝑟𝑟𝑟𝑟𝑟

�
2.5

 
(2) 

 
where Ω is the particle size, n the particle feed rate (i.e. the number of particles in the contact area) and κ 
the particle sharpness (Woldman et al., 2012). The reference values are the silver sand properties. The size 
and sharpness values have been determined for a range of sand types, whereas the feed rate is associated to 
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the way the vehicle is operated. When it is driving on a paved road, the feed rate in the sprocket – track 
contact will be low, whereas it will be high when driving in terrain.  
 

3.1.2 Application and results  

The model is applied by defining a usage profile for the vehicle. This means that the fraction of travelled 
distance in three different terrain types (Asphalt, Unpaved, Heavy soil / loose sand) and different levels of 
terrain unevenness (Light, Medium, Heavy) has been specified, based on interviews with operators. This yields 
a 3x3 matrix of travelled distance in each of the nine combinations, e.g. 12% on unpaved road at medium 
unevenness. The amount of particles that is expected to be present in the contact (i.e. the feed rate n) is related 
to the surface type, while the required power (governing the normal force Fn) is related to both surface type 
and unevenness.  

For this usage profile, the expected number of kilometres to failure has been calculated for six different sand 
types. Failure is in this case defined as reaching a critical amount of volume loss on the sprocket wheel, which 
is derived from the allowable dimensional change as prescribed by the manufacturer. The results are shown in 
Figure 4 (standard scenario). Also a more severe usage profile, increasing the fraction of kilometres driven in 
heavy soil and loose sand, has been constructed, for which the resulting life time is also shown in Figure 4 
(modified scenario).   

These results clearly show that the sand type present in the operational area has a large effect on the expected 
sprocket wheel service life. The reference situation (silver sand) is rather modest, but between the different 
real sand types the sprocket wheel life shows a factor 2 – 3 variation. This is very useful information when 
decisions have to be made on how many spare parts must be shipped for a specific deployment. It is difficult 
to directly compare the predicted values with real observations to determine the accuracy of this model. A 
considerable number of assumptions has been made during the model set-up. These uncertainties prohibit the 
accurate prediction of a service life in an absolute sense. This issue will be discussed in more detail in section 
4. However, the model in its present form is still valuable, as it can be used to perform comparative studies. 

 
Figure 4: Effect of sand properties on sprocket wheel life time for two different usage profiles. 

Finally, the present model required quite an extensive research effort to determine the wear performance of 
various sand varieties. Such an effort in model development, or a similar effort in setting up a monitoring 
system, is not always feasible. Therefore, recently a more pragmatic approach is presented, which is called 
the Functional Usage Profile based Maintenance (FUBM) policy (Tinga et al., 2021). It is suggested to only 
define a limited number of functional usage profiles (as the 3 x 3 profiles used for this case), and replace 
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detailed physical models by direct relations between usage profiles and system lifetime (e.g. based on expert 
opinion). For sure this yields less accurate methods, but often at a hugely reduced cost.  
 

3.2 Electronics failure in naval radar  
The second use case discusses the failure prediction for electronic parts in a naval radar system (Politis, 2015), 
(Tinga et al., 2017). The common belief is that electronics fail in a purely random manner, and failure 
prediction is not feasible. However, also in electronic parts the laws of physics are valid. This means that 
developing suitable models and monitoring the proper quantities makes RUL prediction for electronics feasible 
(Vichare & Pecht, 2006; Vichare et al., 2007). The phased array radar system on a navy ship considered here 
contains a large number of so-called column assemblies (CA), which in their turn contain a number of printed 
circuit boards (PCB), see Figure 5. As the PCBs of the CA appear to fail regularly and unexpectedly, a 
prognostic method for these components could increase the radar availability and assist in improving the 
logistic process of these parts. Note that this radar has a ‘graceful degradation’ process, which implies that a 
single element failure does not directly lead to a non-performing radar: the performance gradually decreases 
upon failure of consecutive elements, and only drops below a critical limit when around 5% of the elements 
have failed. Still, as failure of at least several elements is expected during a longer mission, prediction of these 
failures yields clear benefits for the logistic process.   

3.2.1 Model description 

The first step in model development was to determine the actual failure mechanisms responsible for the 
functional failure of the PCB. These appeared to be thermal fatigue, driven by changes in operating 
temperature of the PCBs and mechanical fatigue due to vibrations. For both mechanisms, models are 
available in literature. 
 

 
 

Figure 5: a) Stacking of PCBs in radar with installed vibration sensor (red circle); b) Typical 
layout of printed circuit board; c) Thermal camera image of temperature distribution. 

The thermal fatigue is modelled with the Manson-Coffin relation, adapted for crack growth in solder 
materials (NIST/SEMATECH, 2012). The number of (temperature) cycles to failure N is a function of the 
magnitude of the temperature cycle (∆T), the maximum temperature (Tmax) and the cycling frequency (f): 
 

)( maxTGbTaAfN −∆−=  
(3) 

 
The constants A, a and b are model parameters. The mechanical fatigue due to vibrations is modelled 
according to (Steinberg, 2000):  
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The number of cycles to failure N0 at a certain vibration induced peak amplitude displacement Z0 is a certain 
fraction of a reference number of cycles Nc at a critical displacement amplitude  Z3σlimit. The latter value can 
be determined from the dimensions of the PCB and the type and position of the component considered. The 
actual displacement is obtained from the natural frequency of the board and the power spectral density (PSD) 
of the vibration encountered by the PCB.  
 

3.2.2 Application and results  

The next step in the process is then to quantify the loads on the PCB, and relate these to the usage profiles 
of the radar system. As the PCB is in the radar during operation of the ship, the variations in both temperature 
cycles and vibration levels have to be determined. The thermal loads have been quantified by simulating the 
operational cycles in a testing machine, where a thermal camera measures the temperature cycles (see Figure 
5c). As the number of operating cycles is limited, the input parameters for the model (∆T, Tmax, f) can now 
directly be linked to the on/off switching of the radar and the specific operational mode. To determine the 
mechanical loads, an accelerometer has been placed inside the radar (see Figure 5a), and vibration 
measurements have been performed for a range of operating conditions (ten Zeldam, 2016): various sea 
states, with diesel engine or gas turbine propulsion. 
 
As the switching history and vibration levels are not continuously monitored, a limited number of operating 
profiles are defined. For each profile, using expert opinion, the switching frequency and vibration level 
variation (based on the different measured operational conditions) are specified. It is then possible to 
compare different scenarios, each containing a certain sequence of operating profiles with specified 
duration. The damage accumulation can be calculated with the models in equations (3) and (4), and the 
remaining useful life of the PCBs can be estimated. The results for four different operating profiles are given 
in Table 1, comparing diesel and gas turbine propulsion, as well as various speeds and weather conditions. 
It is clear that gas turbine propulsion is less damaging for the radar PCBs, as the vibration levels in the ship 
are lower in that case.  

 
Table 1: Calculated PCB damage (per time unit). 

Scenario Damage 
A (Die / medium speed / medium weather) 1.41 
B (Die / medium speed / bad weather) 5.55 
C (GT / medium speed / medium weather) 0.70 
D (GT / high speed / medium weather) 2.10 

Die = diesel, GT = gas turbine propulsion 
 
Although the numbers in Table 1 can now be used to compare different scenario’s, the accuracy of these 
numbers (in absolute sense) is hard to determine (see also section 4.2). To fully validate the predictions, the 
history of an individual PCB is required. However, the configuration management is too limited to fully 
trace on which specific radar system a PCB has been used, and what the usage profile of that radar (i.e. ship) 
has been in a specific period of time. However, until this kind of information is available, the model can still 
be used in a comparative manner. 

3.3 NH-90 helicopter landing gear  
The final use case is on the NH-90 helicopter, for which the RUL of the landing gear shock absorber is 
predicted (Heerink et al., 2012; Tinga, 2013a). Although the majority of aircraft maintenance is based on flight 
hours, the rather advanced Health and Usage Monitoring System (HUMS) in this helicopter allowed to study 
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the potential of prognostic approaches. After studying the occurring failure modes of the NH-90 helicopter, as 
obtained from the computerized maintenance management system (CMMS), it was concluded that one of the 
persistent failure modes is oil leakage in the landing gear shock absorbers, see Figure 6.  

In a certain period, 11 oil leakage failures occurred within the fleet. The number of accumulated flight hours 
of the helicopters at the moment of these failures could be obtained. This is plotted in Figure 7a, showing that 
there is a large variation in time to failure: the numbers of flight hours at failure range from 33 to 220 hours. 
The lack of correlation shows that the number of flight hours is not the most relevant failure parameter in this 
case. A physical model-based prognostic method is expected to perform better. 

  
Figure 6: NH-90 helicopter and a schematic representation of the landing gear shock absorber. 

3.3.1 Model description 

A root cause analysis was performed to determine the failure mechanism and governing loads. Wearing of 
the rubber seal was found to be the cause of the leakage. If the seal gets damaged, oil from the internal oil 
chamber leaks to the environment. A detailed analysis of this wear process reveals that the governing loads 
in this case are (as in the first use case) the normal load (Fn) applied to the seal and the distance (s) travelled 
by the seal relative to the counter surface. The resulting wear volume (V) is again expressed by the Archard 
law for wear processes, see Eq. (1) in 3.1.1.  
 

3.3.2 Application and results  

These loads must be related to the usage of the helicopter. The normal load Fn on the seal is a constant value, 
which can be estimated from the relative contraction of the seal and it’s elastic properties. The sliding 
distance (s) is directly related to the movement of the cylinder. At each landing, the cylinder will be 
compressed to absorb the shock. The total weight of the helicopter determines the stroke of the cylinder. 
The specific wear rate in this case is determined by the material properties and the lubrication conditions, 
which are both considered to be constant here. 
 
The on-board health and usage monitoring system (HUMS) registers both the number of landings in each 
period and the helicopter weight during each landing. Using that information, the amount of wear at the 
moment of failure of the seal for each specific helicopter can be approximated with the physical model. This 
is done for each helicopter where a failure was detected, as is shown in Figure 7b.  
 
Comparing the plots in Figure 7a and b clearly shows that the calculated amount of wear, based on the 
number of landings and landing weight, has much more predictive power than the number of flight hours. 
The observed variation in the results is now much lower. Except for the first two cases, the points appear in 
two distinct groups: one group around 30 mm3 and another group (of three points) around 50 mm3. The 
observed difference between the two groups can be explained by the fact that another type of seal was 
introduced by the OEM as a response to the quickly failing seals. This new seal was used in the absorbers 
that failed at 50 mm3 of wear: it clearly has a better wear resistance than the original seal, since the oil 
leakage occurs at a later stage.  
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Figure 7:  a) Number of flight hours for 11 events; b) predicted amount of wear for same events. 

4.0 CHALLENGES AND OPPORTUNITIES 

The case studies in the previous section have demonstrated that the approach presented in section 2 can be 
applied to a range of military systems. They also show that prognostic methods based on the physics of failure 
have quite some potential, as they don’t need a large amount of failure data, and at the same time allow for a 
prediction which can be quite far ahead (provided that the future usage profile is known or can be estimated). 
Still, there are some challenges for these type of methods, which need additional attention before the physic-
based prognostics can be widely applied in (military) practice. These challenges are (i) the gap between system 
and component level, and the associated selection of critical parts; (ii) the validation of prognostic methods; 
and (iii) the development of hybrid methods, where physics and data-driven methods are combined. This 
section will discuss these three challenges and provide suggestions for tackling these. 

4.1  Component vs. system level and critical part selection 
Military systems are typically complex systems consisting of many different (sub)systems and components. 
From a (military) operational perspective, the main question is whether the complete system can fulfil its 
mission, i.e. whether the system is available and deployable when needed. A suitable predictive maintenance 
policy thus needs to be capable of predicting upcoming failures on the system level. However, most prediction 
models are not on the system level, but on the component level. And this is especially the case for the physics-
of-failure methods, as it is infeasible to model all physical processes for a complete system. Some data-driven 
approaches might be capable of predicting (part of) the system-level failures, but it would then require a huge 
training data set to learn these models all potential failure modes.  

Therefore, the challenge here is to achieve an acceptable estimate of system failure probability within an 
acceptable amount of computational and model development effort. Developing physics-of-failure models for 
all component for sure is not feasible, so a well-motivated selection of important / critical components must 
be made. And indeed, especially for mechanical components, there is large range in criticality amongst the 
components in a system: some are responsible for many system failures, e.g. because they have no back-ups 
(redundancy), have short failure times (inherent reliability, MTBF), or are largely affected by specific 
operating conditions. On the other hand, many other components hardly ever fail, and therefore any effort 
spent on life prediction methods would be a waste.  

The solution to this challenge could be twofold. The main direction is to do a well-motivated selection of the 
critical parts, and focus model development and prognostics on these parts, thus covering the majority of the 
system-level failures. A procedure to select the critical parts has been proposed recently (Tiddens et al., 2018). 
The first step in this procedure is filtering the different failures using methods like the 4-quadrant method 
originally proposed by (Lee et al., 2014), and modified in (Tinga et al., 2017). As shown in Figure 8, this 
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method clusters the failures based on two aspects: failure frequency and failure consequence (in this case 
downtime, but can also be costs). The failing parts in quadrant 1 (A1 in Figure 8), 2 and 3 can best be covered 
by other policies (i.e. modification, more spare parts, regular maintenance), but the parts in the 4th quadrant are 
the ones that are suitable for a predictive maintenance policy: these failures do not occur frequently, but when 
they occur, the consequence is considerable. After this first filtering of critical parts, the set can be further 
refined by the criteria explained in (Tiddens et al., 2018), i.e. identifying showstoppers and executing detailed 
feasibility studies.   

A second direction for solving the system vs. component level challenge is to find ways for speeding up the 
prognostic model development: if component-level prognostic models can be easily derived, the large number 
of models needed is not a big problem anymore. Also deriving prognostic methods on the subsystem / assembly 
level could help, although this is still challenging for purely physics-based methods. However, combining 
physical models with data-driven approaches may enable this, as will be discussed in subsection 4.3 on hybrid 
methods. Another option is to use models for standard equipment types (e.g. pump, bearing, shaft, e-motor) 
from reliability handbooks. These models are relatively simple, and not very accurate, but can be used to cover 
a large amount of components in a complex system with minimal effort, see e.g. (Alves da Silveira et al., 
2021). 

 

Figure 8:  Clustering of a set of failures. The dashed region indicates the failures that are 
suitable for predictive maintenance. 

For the CV90 and NH-90 cases, such a part selection procedure has been applied to obtain the components 
(i.e. the sprocket wheel and landing gear shock absorber) for which a model would have to be developed. For 
the electronics case, this selection (PCB) was based on the availability of a model in literature. 

4.2  Validation of prognostic methods 
The second challenge encountered in applying physics of failure for critical parts is the validation of the 
models. Although the models are based on first principles, and therefore do not heavily rely on data, they can 
only be applied with confidence when it can be proven that the predicted time to failure is close to the actually 
observed value. The precise value that the model predicts typically depends on the model (material) parameters 
that have been derived for the case under consideration. These are either based on field data, or are obtained 
from handbooks. 

The challenges in this validation process are (i) that at least a number of actual failures must be available to 
compare with the model predictions, and (ii) for these failures, the complete usage or load history must be 
known. The latter is important, because the physical models require a load sequence as input. Only using the 
specific history of an observed failure allows to make a comparison with the model prediction, but such a 
detailed history is often not available. This will be discussed using the previously described cases. 
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For the CV90 sprocket wheel, the load history must be derived from the usage profile, i.e. a registration of 
km’s driven at different terrain types and unevenness. Although it is known what the fleet wide average is, this 
info is not available for an individual vehicle. Moreover, registration of replaced sprocket wheels is not 
complete, and the amount of wear on a rejected wheel is also not registered. This lack of detail in the 
registrations makes it impossible to calculate the amount of wear for an individual vehicle, and compare this 
with the amount observed in practice. Recently, the on-board monitoring of several usage parameters with 
sensors has started, which gives potential for more detailed information in the (near) future. For the electronics 
case the situation is quite similar. To fully validate the model, the history of an individual PCB is required. 
However, the configuration management is too limited to fully trace on which specific radar system a PCB 
has been used, and what the usage profile of that radar (i.e. ship) has been in a specific period of time. The 
only case that could be fully validated is the helicopter case. For the shock absorber life prediction, the number 
of landings and weight of the helicopter is required. The installed HUMS system precisely registers these 
parameters for each individual helicopter, which allows to simulate that history in the model, and compare the 
model prediction and actually observed time to failure. The solution for the load history challenge is thus to 
utilize more advanced monitoring systems to collect (and store) detailed information on load histories for 
individual systems. 

The remaining challenge for the lack of actual failures originates from the fundamental point that preventive 
maintenance is intended to prevent failures, i.e. components are replaced (far) before they fail, and the real 
lifetime is never revealed. Therefore, the amount of failures is limited by definition. One way to tackle this is 
applying the front runner concept, which is presently being explored. The idea is to select from a fleet of 
systems (or components) a limited number of systems, and stop maintaining these. The system(s) that are the 
front runners in terms of operating hours are selected, as these are expected to fail the soonest. Off-course, this 
can only be done with systems for which a failure does not have catastrophic consequences. Once the front 
runner fails, the actual time to failure is known, and can directly be used to extend the intervals of the remaining 
systems in the fleet (which are lagging behind, so are not yet prone to failure). Additionally, extensive 
monitoring of the selected systems is arranged, which means that data patterns that belong to (almost) failing 
systems can be gathered. The latter is very useful for training AI algorithms, and allows to predict these type 
of failures in the future. So sacrificing a small number of systems yields insight and data to potentially save 
hugely on the rest of the fleet. 

4.3  Hybrid approaches 
The final challenge to be discussed is the development of hybrid approaches that combine physics of failure 
with data-driven methods. Both approaches have their own pros and cons: physical models typically focus on 
component level, and are time-consuming to develop, they require a certain amount of domain knowledge, but 
don’t need large amounts of data, and can also predict failures that have not been observed yet in practice; 
data-driven methods can be developed more quickly, and don’t require domain knowledge, but depend on the 
availability of high quality data, and only predict failures that are included in the training data. Combining 
these two types of methods is expected to provide better performing methods, as the strengths of both are 
combined. The challenge is how to achieve that. 

The first approach is a parallel approach, where both a physics-of-failure and a data-driven method are 
simultaneously used to calculate a time to failure of remaining useful life, and the results of the two methods 
are combined (in a weighted manner). This approach is typically followed when the performance (i.e. the 
predictive capability) of the two types of models is more or less similar, but using only one of them yields an 
unacceptably low prediction accuracy. 

The second approach is called physics-to-data, where a first principles model is used to simulate data that is 
subsequently used as input for a data-driven prognostic method. In this approach, the physical model can solve 
(part of) the data shortage that a data-driven method could suffer from. This approach is typically suitable in 
situations where an accurate physical degradation or failure model is lacking, but high-fidelity process 
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simulation models are available to generate relevant data for a range of operating conditions. Some well-known 
examples in this category use gas turbine simulation programs to generate data for GT prognostics.  

The third and final approach is data-to-physics, where physics of failure models, or their parameters, are 
updated with data obtained from measurements on a real system. This allows to periodically tune the model in 
such a way that it tracks the degradation process accurately. An example of this approach, is an Unscented 
Kalman Filter being used to update a crack propagation model (Keizers et al., 2021). This approach can be 
followed when a rather accurate physical degradation model is available, but considerable uncertainty is 
present with regard to the model parameters and / or operating conditions. This uncertainty can then be reduced 
by updating the model with measurement data. 

5.0 CONCLUSION 

This paper has introduced a framework for the prediction of failures in critical components, using the physics 
of failure. Three distinct cases that have been studied in the past years using this framework have been 
discussed, showing the potential of these type of methods in prognostics. After these case descriptions, three 
important challenges in this field have been discussed, i.e. the selection of critical parts, the validation of 
prognostic models and the development of hybrid methods. Solutions and directions for further research have 
been given, allowing to further extend the potential of the physics of failure based prognostic methods for 
military systems in the near future. 
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